小升初奥数知识点

报名

约数问题

100以内约数个数最多的自然数有五个,它们分别是几?

答案与解析:

解:如果恰有一个质因数,那么约数最多的是26=64,有7个约数;

如果恰有两个不同质因数,那么约数最多的是23×32=72和25×3=96,各有12个约数;

如果恰有三个不同质因数,那么约数最多的是22×3×5=60,22×3×7=84和2×32×5=90,各有12个约数。

所以100以内约数最多的自然数是60,72,84,90和96。

工程问题

游泳池有甲、乙、丙三个注水管,如果单开甲管需要20小时注满水池;甲、乙两管合开需要8小时注满水池;乙、丙两管合开需要6小时注满水池,那么,单开丙管需要多少小时可以注满水池?

答案与解析:

将此题转化为工程问题,由已知,甲的工作效率是1/20,乙的工作效率是1/8-1/20=3/40,

丙的工作效率是1/6=3/40=11/120,所以,单开丙管需要120/11小时注满水池。

两地间距

甲、乙两列火车同时从A地开往B地,甲车8小时可以到达,乙车每小时比甲车多行20千米,比甲车提前2小时到达。求A、B两地间的距离。

答案与解析:

乙车行驶了6小时到达B地,此时乙车比甲车多行了20×6=120千米,即甲车还要在2小时内行驶120千米,故甲的速度为60千米/时,A、B间距离为60×8=480千米。

循环赛

五支足球队进行单循环赛,每两队之间进行一场比赛.胜一场得3分,平一场得1分,负一场得0分.最后发现各队得分都不相同,第三名得了7分,并且和第一名打平,那么这五支球队的得分从高到低依次是多少?

答案与解析:

每个队各赛4场,共赛5×4÷2=10场.第三名得7分,与第一名打平,那么剩下的3场,得6分,只能是3+3+0,即和第二名的比赛输了,所以只能是1+0+/+3+3.

那么,第一名为/+3+1+3+3,第二名为0+/+3+3+3,第三名为1+0+/+3+3,第四名为0+0+0+/+3,第五名为0+0+0+0+/.

所以,这五支球队的得分从高到低依次是10、9、7、3、0.

起跑线

在300米长的环形跑道上,甲乙两个人同时同向并排起跑,甲平均速度是每秒5米,乙平均速度是每秒4.4米,两人起跑后的第一次相遇在起跑线前几米?

答案与解析:

300÷(5-4.4)=500秒,表示追及时间

5×500=2500米,表示甲追到乙时所行的路程

2500÷300=8圈……100米,表示甲追及总路程为8圈还多100米,就是在原来起跑线的前方100米处相遇。

相距问题

甲、乙、丙三人依次相距280米,甲、乙、丙每分钟依次走90米、80米、72米.如果甲、乙、丙同时出发,那么经过几分钟,甲第一次与乙、丙的距离相等?

答案与解析:甲与乙、丙的距离相等有两种情况:一种是乙追上丙时;另一种是甲位于乙、丙之间.

⑴乙追上丙需:280÷(80-72)=35(分钟).

⑵甲位于乙、丙之间且与乙、丙等距离,我们可以假设有一个丁,他的速度为乙、丙的速度的平均值,即(80+72)÷2=76(米/分),且开始时丁在乙、丙之间的中点的位置,这样开始时丁与乙、丙的距离相等,而且无论经过多长时间,乙比丁多走的路程与丁比丙多走的路程相等,所以丁与乙、丙的距离也还相等,也就是说丁始终在乙、丙的中点.所以当甲遇上丁时甲与乙、丙的距离相等,而甲与丁相遇时间为:(280+280÷2)÷(90-76)=30(分钟).

经比较,甲第一次与乙、丙的距离相等需经过30分钟.

骗子逛商店

一个骗子到商店买了5元的东西,他付给店员50元钱,然后店员把剩下的钱找给了他;这时他又说自己有零钱,于是给店员5元的零钱,并且要回了开始给出的50元,请问:这个骗子一共骗了多少钱?

答案与解析:

理清思路分析骗子在这个过程中付出和收获的分别具体有多少钱,然后进行相减;骗子在这个过程中总共付出了5元:开始给了50元最后相当于归还了;而骗子在这个过程中收获的有:价值5元的东西和找零的50-5=45元;所以骗子一共骗的钱总数为:5+45-5=45元

火车过隧道

某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米.时速为72千米的列车相遇,错车而过需要几秒钟?

答案与解析:

根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒)

某列车的速度为:(250-210)÷(25-23)=40÷2=20(米/秒)

某列车的车长为:20×25-250=500-250=250(米)

两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)

继续阅读
weinxin
咨询微信
学习问题,扫一扫我
报名
  • 本文由 发表于 2016年8月19日07:43:08